Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602847

RESUMO

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Nefropatias , MicroRNAs , Neoplasias , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estado Pré-Diabético/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim , Glucose/farmacologia , MicroRNAs/farmacologia , Sódio
2.
Biochem Pharmacol ; 223: 116197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583810

RESUMO

Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.


Assuntos
Melanoma , MicroRNAs , Quassinas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quassinas/farmacologia , Apoptose , MicroRNAs/genética , MicroRNAs/farmacologia , Proteínas Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1358216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533381

RESUMO

Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.


Assuntos
Infecções por Escherichia coli , MicroRNAs , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Galinhas/genética , Baço/metabolismo , MicroRNAs/farmacologia , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia
4.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373630

RESUMO

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Semaforina-3A/farmacologia , Axônios , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Neuropatia Ciática/terapia , Traumatismos dos Nervos Periféricos/terapia , MicroRNAs/genética , MicroRNAs/farmacologia
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 57-65, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387900

RESUMO

OBJECTIVE: To observe the effect of resveratrol (Res) on T-acute lymphoblastic leukemia (T-ALL) mice, and further explore its mechanism on Notch1 signaling pathway. METHODS: Twenty-five 6-8 weeks old female C57BL/6 mice were randomly divided into control group, T-ALL group and Res group. Res group was further divided into low-Res, middle-Res and high-Res group. The percentage of leukemia cells in peripheral blood and spleen cell suspension were detected by flow cytometry and Wright-Giemsa staining, pathological morphology of spleen and bone marrow tissues were observed by HE staining, the expression levels of Notch1, Hes-1, c-Myc, miR-19b and PTEN mRNA in spleen tissue were detected by RT-qPCR, and the protein levels of Notch1, Hes-1, c-Myc, p-PTEN and PTEN were detected by Western blot. RESULTS: Compared with control group, the leukemia cells in peripheral blood of mice in T-ALL group were markedly increased, accompanied by diffuse infiltration of leukemia cells in spleen and bone marrow tissues, the mRNA levels of Notch1, Hes-1, c-Myc, miR-19b and the protein levels of Notch1, Hes-1, c-Myc were increased (P <0.01), while the expression of PTEN mRNA and protein were significantly decreased in the spleen tissue of T-ALL mice (P <0.01). The above indicators in the H-Res group were reversed compared with T-ALL group after administration of resveratrol. CONCLUSION: Resveratrol may play a role in anti T-ALL by inhibiting Notch1 signaling pathway in mice.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Camundongos , Feminino , Animais , Resveratrol/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , MicroRNAs/farmacologia , RNA Mensageiro
6.
Cell Biochem Funct ; 42(2): e3952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343018

RESUMO

This study uncovered the potential clinical value and molecular driving mechanisms of circular RNAs (circRNAs) in gallbladder cancer (GBC). Differentially expressed circRNAs in GBC cells were screened by high-throughput sequencing. CircRNA_CDKN1A (circBase ID: hsa_circ_0076194) was knocked out in BGC-SD cells through transfection with sh-circRNA_CDKN1A. Then, proliferation was investigated via CCK8 and EdU assays, apoptosis via flow cytometry, migration via wound healing assays, and invasion via Transwell assays. Bioinformatics analysis of circRNA_CDKN1A-related signaling pathways was performed using MetScape and g:Profiler. Results showed that the knockdown of circRNA_CDKN1A enhanced the proliferation, migration, and invasion of GBC cells and inhibited apoptosis. In addition, knocking out circRNA_CDKN1A promoted GBC cell proliferation and enhanced the dry indices of the OCT4 protein and CD34 expression levels. The knockdown of circRNA_CDKN1A activated the epithelial-mesenchymal transition pathway. Bioinformatics analysis revealed that the biological role of circRNA_CDKN1A in GBC cells involved the NF-κB pathway. LY2409881, which is an NF-κB inhibitor, reversed the effects induced by the knockdown of circRNA_CDKN1A in GBC-SD cells. In summary, the knockdown of circRNA_CDKN1A promoted the progression of GBC by activating the NF-κB signaling pathway. For the first time, this study revealed the mechanism of circRNA_CDKN1A-mediated regulatory action in GBC and identified the newly discovered circRNA_CDKN1A-NF-κB signaling axis as a potentially important candidate for clinical therapy and prognostic diagnosis of GBC.


Assuntos
Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , NF-kappa B/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular , MicroRNAs/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
7.
Adv Sci (Weinh) ; 11(13): e2307761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286650

RESUMO

Delayed wound healing is a major complication of diabetes, and is associated with impaired cellular functions. Current treatments are unsatisfactory. Based on the previous reports on microRNA expression in small extracellular vesicles (sEVs), miR-17-5p-engineered sEVs (sEVs17-OE) and encapsulated them in gelatin methacryloyl (GelMA) hydrogel for diabetic wounds treatment are fabricated. SEVs17-OE are successfully fabricated with a 16-fold increase in miR-17-5p expression. SEVs17-OE inhibited senescence and promoted the proliferation, migration, and tube formation of high glucose-induced human umbilical vein endothelial cells (HG-HUVECs). Additionally, sEVs17-OE also performs a promotive effect on high glucose-induced human dermal fibroblasts (HG-HDFs). Mechanism analysis showed the expressions of p21 and phosphatase and tensin homolog (PTEN), as the target genes of miR-17-5p, are downregulated significantly by sEVs17-OE. Accordingly, the downstream genes and pathways of p21 and PTEN, are activated. Next, sEVs17-OE are loaded in GelMA hydrogel to fabricate a novel bioactive wound dressing and to evaluate their effects on diabetic wound healing. Gel-sEVs17-OE effectively accelerated wound healing by promoting angiogenesis and collagen deposition. The cellular mechanism may be associated with local cell proliferation. Therefore, a novel bioactive wound dressing by loading sEVs17-OE in GelMA hydrogel, offering an option for chronic wound management is successfully fabricated.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Gelatina , Metacrilatos , MicroRNAs , Cicatrização , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Endoteliais , Vesículas Extracelulares/genética , Glucose , Hidrogéis , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Cicatrização/genética , Complicações do Diabetes/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Fluids Barriers CNS ; 21(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243347

RESUMO

BACKGROUND: Blood brain barrier (BBB) breakdown is one of the key mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Astrocytes interact with endothelial and regulate BBB integrity via paracrine signaling factors. More and more studies reveal astrocyte-derived extracellular vesicles (ADEVs) as an important way of intercellular communication. However, the role of ADEV in BBB integrity after ICH remains unclear. METHODS: ADEVs were obtained from astrocytes with or without oxygen and glucose deprivation (OGD) pre-stimulation and the role of ADEVs in ICH was investigated using ICH mice model and ICH cell model. The potential regulatory effect of ADEVs on endothelial barrier integrity was identified by TEER, western blot and immunofluorescence in vitro. In vivo, functional evaluation, Evans-blue leakage and tight junction proteins (TJPs) expression were analyzed. MiRNA sequencing revealed that microRNA-27a-3p (miR-27a-3p) was differentially expressed miRNA in the EVs from OGD-pretreated astrocytes compared with normal control. The regulatory mechanism of miR-27a-3p was assessed using Luciferase assay, RT-PCR, western blot and immunofluorescence. RESULTS: OGD-activated astrocytes reduced hemin-induced endothelial hyper-permeability through secreting EVs. OGD-activated ADEVs alleviated BBB dysfunction after ICH in vivo and in vitro. MicroRNA microarray analysis indicated that miR-27a-3p is a major component that was highly expressed miRNA in OGD pretreated-ADEVs. OGD-ADEVs mitigated BBB injury through transferring miR-27a-3p into bEnd.3 cells and regulating ARHGAP25/Wnt/ß-catenin pathway. CONCLUSION: Taken together, these findings firstly revealed that miR-27a-3p, as one of the main components of OGD-pretreated ADEVs, attenuated BBB destruction and improved neurological deficits following ICH by regulating endothelial ARHGAP25/Wnt/ß-catenin axis. OGD-ADEVs might be a novel strategy for the treatment of ICH. this study implicates that EVs from OGD pre-stimulated astrocytes.


Assuntos
Exossomos , MicroRNAs , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Astrócitos/metabolismo , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Oxigênio/metabolismo , Glucose , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Hemorragia Cerebral/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(3): e2220532121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207077

RESUMO

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.


Assuntos
MicroRNAs , Sono , Camundongos , Animais , Sono/fisiologia , Privação do Sono/genética , Eletroencefalografia , Vigília/fisiologia , Prosencéfalo , MicroRNAs/genética , MicroRNAs/farmacologia
10.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990493

RESUMO

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , MicroRNAs/farmacologia
11.
J Biol Chem ; 300(1): 105487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995941

RESUMO

Oligodendrocyte precursor cells are present in the adult central nervous system, and their impaired ability to differentiate into myelinating oligodendrocytes can lead to demyelination in patients with multiple sclerosis, accompanied by neurological deficits and cognitive impairment. Exosomes, small vesicles released by cells, are known to facilitate intercellular communication by carrying bioactive molecules. In this study, we utilized exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs-Exos). We performed sequencing and bioinformatics analysis of exosome-treated cells to demonstrate that HUMSCs-Exos can stimulate myelin gene expression in oigodendrocyte precursor cells. Functional investigations revealed that HUMSCs-Exos activate the Pi3k/Akt pathway and regulate the Tbr1/Wnt signaling molecules through the transfer of miR-23a-3p, promoting oligodendrocytes differentiation and enhancing the expression of myelin-related proteins. In an experimental autoimmune encephalomyelitis model, treatment with HUMSCs-Exos significantly improved neurological function and facilitated remyelination. This study provides cellular and molecular insights into the use of cell-free exosome therapy for central nervous system demyelination associated with multiple sclerosis, demonstrating its great potential for treating demyelinating and neurodegenerative diseases.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Esclerose Múltipla , Remielinização , Adulto , Humanos , Diferenciação Celular/genética , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Esclerose Múltipla/genética , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Remielinização/efeitos dos fármacos , Remielinização/genética , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas com Domínio T/metabolismo , Modelos Animais de Doenças , Células Cultivadas
12.
Am J Nephrol ; 55(1): 86-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734331

RESUMO

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Assuntos
Dietilexilftalato , MicroRNAs , Ácidos Ftálicos , Animais , Camundongos , Masculino , Dietilexilftalato/toxicidade , Óleo de Milho/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes , Rim , MicroRNAs/genética , MicroRNAs/farmacologia , RNA Mensageiro , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Guanosina Trifosfato/farmacologia
13.
Int Immunopharmacol ; 127: 111325, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070468

RESUMO

Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.


Assuntos
Arsenicais , Compostos Benzidrílicos , Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus Tipo 2 , Glucosídeos , MicroRNAs , Ratos , Animais , Trióxido de Arsênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , MicroRNAs/genética , MicroRNAs/farmacologia , Arsenicais/efeitos adversos , Arsenicais/metabolismo , Óxidos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Apoptose
14.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38096580

RESUMO

Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring the absence of detrimental residues or undesirable reactions under varying conditions. (3) Low-temperature incorporation: Curcumin is incorporated into the formulation at temperatures approximating 50 °C. The formulation comprises lecithin (LE), chitosan (CH), an eco-friendly emulsifying agent, and olive oil as the solvent for curcumin. Nanoscale conversion is achieved through ultrasonication and probe sonication (20 kHz). Transmission electron microscopy (TEM) reveals spherical nanoparticles with diameters ranging from 29.33 nm and negative zeta potentials within the -28 to -34 mV range. Molecular studies involve the design of primers for miR20a and miR21. Our findings showcase a remarkable encapsulation efficiency of 91.1% for curcumin, as determined through a linear equation. The curcumin-loaded nanoformulation demonstrates potent anticancer activity, effectively activating the apoptosis pathway in cancer cells at the minimum inhibitory concentration. These results underscore the potential of our nanoformulation as a compelling, cancer-selective treatment strategy, preserving the integrity of normal cells, and thus, warranting further exploration in the field of cancer therapy.


Assuntos
Quitosana , Curcumina , Neoplasias Esofágicas , MicroRNAs , Nanopartículas , Humanos , Curcumina/química , Quitosana/química , Lecitinas , Sobrevivência Celular , Nanopartículas/química , MicroRNAs/genética , MicroRNAs/farmacologia , Portadores de Fármacos/química
15.
Clin Anat ; 37(1): 2-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37191314

RESUMO

Colon cancer is a great threat to human health. Curcumin, as a traditional Chinese medicine extract with anti-tumor and anti-inflammatory effects, can affect the development of diverse human diseases including cancer. The aim of this research was to probe the mechanism by which curcumin regulates colon cancer progression. Colon cancer cells were processed with graded concentrations of curcumin. The proliferation and apoptosis of the treated cells were determined by MTT, colony formation assay and flow cytometry. Expression of signaling pathway-related proteins and programmed death-ligand 1 (PD-L1) was measured by western blotting. The effect of curcumin on tumor cell growth was verified through T cell-mediated killing and ELISA assays. The relationship between target gene expression and the survival rate of colon cancer patients was analyzed by a survival curve. Curcumin treatment restrained proliferation and accelerated apoptosis of colon cancer cells. It elevated miR-206 expression, which in turn affected colon cancer cell function. miR-206 enhanced colon cancer cell apoptosis and inhibited PD-L1 expression; thus, curcumin enhanced the killing effect of T cells on tumor cells by suppressing PD-L1 through inhibiting the JAK/STAT3 pathway. Patients with high expression of miR-206 had better survival rates than those with low expression. Curcumin can regulate miR-206 expression and inhibit the malignant behavior of colon cancer cells and enhance T cell killing through the JAK/STAT3 pathway.


Assuntos
Neoplasias do Colo , Curcumina , MicroRNAs , Humanos , Curcumina/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Apoptose
16.
Brain Behav Immun ; 115: 258-279, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820975

RESUMO

Paternal pre-conceptual environmental experiences, such as stress and diet, can affect offspring brain and behavioral phenotypes via epigenetic modifications in sperm. Furthermore, maternal immune activation due to infection during gestation can reprogram offspring behavior and brain functioning in adulthood. However, the effects of paternal pre-conceptual exposure to immune activation on the behavior and physiology of offspring (F1) and grand-offspring (F2) are not currently known. We explored effects of paternal pre-conceptual exposure to viral-like immune activation on F1 and F2 behavioral and physiological phenotypes using a C57BL/6J mouse model. Males were treated with a single injection (intraperitoneal) of the viral mimetic polyinosinic:polycytidylic acid (Poly I:C: 12 mg/kg) then bred with naïve female mice four weeks after the Poly I:C (or 0.9% saline control) injection. The F1 offspring of Poly I:C treated fathers displayed increased depression-like behavior in the Porsolt swim test, an altered stress response in the novelty-suppressed feeding test, and significant transcriptomic changes in their hippocampus. Additionally, the F1 male offspring of Poly I:C treated F0 males showed significantly increased immune responsivity after a Poly I:C immune challenge (12 mg/kg). Furthermore, the F2 male grand-offspring took longer to enter and travelled significantly shorter distances in the light zone of the light/dark box. An analysis of the small noncoding RNA profiles in sperm from Poly I:C treated males and their male offspring revealed significant effects of Poly I:C on the sperm microRNA content at the time of conception and on the sperm PIWI-interacting RNA content of the male offspring. Notably, eight miRNAs with an FDR < 0.05 (miR-141-3p, miR-126b-5p, miR-669o-5p, miR-10b-3p, miR-471-5p, miR-463-5p, miR-148b-3p, and miR-181c-5p) were found to be significantly downregulated in the sperm of Poly I:C treated males. Collectively, we demonstrate that paternal pre-conceptual exposure to a viral immune challenge results in both intergenerational and transgenerational effects on brain and behavior that may be mediated by alterations in the sperm small noncoding RNA content.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Masculino , Feminino , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Sêmen , Espermatozoides , Pai , MicroRNAs/genética , MicroRNAs/farmacologia , Pequeno RNA não Traduzido/farmacologia , Poli I/farmacologia
17.
J Orthop Surg Res ; 18(1): 939, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062514

RESUMO

OBJECTIVES: Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model. METHODS: BMECs, BMSCs and BMSC-Exos were isolated and validated. BMECs after the treatment of hydrocortisone were cocultured with different concentrations of BMSC-Exos, then proliferation, migration, apoptosis and angiogenesis of BMECs were evaluated by CCK-8, Annexin V-FITC/PI, cell scratch and tube formation assays. BMSCs were transfected with miRNA-210 mimics and miRNA-210 inhibitors, then BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor secreted from such cells were collected. The differences between BMSC-Exos, BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor in protecting BMECs against GCS treatment were analyzed by methods mentioned above. Intramuscular injections of methylprednisolone were performed on Sprague-Dawley rats to establish an animal model of GCS-ONFH, then tail intravenous injections of BMSC-Exos, BMSC-ExosmiRNA-210 mimic or BMSC-ExosmiRNA-210 inhibitor were conducted after methylprednisolone injection. Histological and immunofluorescence staining and micro-CT were performed to evaluate the effects of BMSC-Exos and internal miRNA-210 on the in vivo GCS-ONFH model. RESULTS: Different concentrations of BMSC-Exos, especially high concentration of BMSC-Exos, could enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs treated with GCS. Compared with BMSC-Exos, BMSC-ExosmiRNA-210 mimic could further enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs, while BMECs in the GCS + BMSC-ExosmiRNA-210 inhibitor group showed reduced proliferation, migration and angiogenesis ability and higher apoptosis rates. In the rat GCS-ONFH model, BMSC-Exos, especially BMSC-ExosmiRNA-210 mimic, could increase microvascular density and enhance bone remodeling of femoral heads. CONCLUSIONS: BMSC-Exos containing miRNA-210 could serve as potential therapeutics for protecting BMECs and ameliorating the progression of GCS-ONFH.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteonecrose , Ratos , Animais , Glucocorticoides/toxicidade , Células Endoteliais , Cabeça do Fêmur , Hidrocortisona/farmacologia , Ratos Sprague-Dawley , Metilprednisolona , MicroRNAs/farmacologia
18.
Fluids Barriers CNS ; 20(1): 92, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066639

RESUMO

BACKGROUND: Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS: Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS: Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin ß1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin ß1 expression. CONCLUSION: This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.


Assuntos
Hiperamonemia , Falência Hepática Aguda , MicroRNAs , Ratos , Animais , Barreira Hematoencefálica/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células Endoteliais/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Hiperamonemia/metabolismo , Ocludina/metabolismo , Integrina beta1/metabolismo , Integrina beta1/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139016

RESUMO

Müller cells play a critical role in the closure of macular holes, and their proliferation and migration are facilitated by the internal limiting membrane (ILM). Despite the importance of this process, the underlying molecular mechanism remains underexplored. This study investigated the effects of ILM components on the microRNA (miRNA) profile of Müller cells. Rat Müller cells (rMC-1) were cultured with a culture insert and varying concentrations of ILM component coatings, namely, collagen IV, laminin, and fibronectin, and cell migration was assessed by measuring cell-free areas in successive photographs following insert removal. MiRNAs were then extracted from these cells and analyzed. Mimics and inhibitors of miRNA candidates were transfected into Müller cells, and a cell migration assay and additional cell viability assays were performed. The results revealed that the ILM components promoted Müller cell migration (p < 0.01). Among the miRNA candidates, miR-194-3p was upregulated, whereas miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-152-3p, miR-196a-5p, miR-542-5p, miR-871-3p, miR-1839-5p, and miR-3573-3p were significantly downregulated (p < 0.05; fold change > 1.5). Moreover, miR-152-3p and miR-196a-5p reduced cell migration (p < 0.05) and proliferation (p < 0.001), and their suppressive effects were reversed by their respective inhibitors. In conclusion, miRNAs were regulated in ILM component-activated Müller cells, with miR-152-3p and miR-196a-5p regulating Müller cell migration and proliferation. These results serve as a basis for understanding the molecular healing process of macular holes and identifying potential new target genes in future research.


Assuntos
MicroRNAs , Perfurações Retinianas , Animais , Ratos , Colágeno Tipo IV/farmacologia , Células Ependimogliais , Membranas , MicroRNAs/genética , MicroRNAs/farmacologia , Perfurações Retinianas/genética
20.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139125

RESUMO

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças dos Animais , Gastrodia , MicroRNAs , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Gastrodia/genética , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...